Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AI-Aided Online Adaptive OFDM Receiver: Design and Experimental Results (1812.06638v3)

Published 17 Dec 2018 in eess.SP, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: Orthogonal frequency division multiplexing (OFDM) has been widely applied in current communication systems. The AI-aided OFDM receivers are currently brought to the forefront to replace and improve the traditional OFDM receivers. In this study, we first compare two AI-aided OFDM receivers, namely, data-driven fully connected deep neural network and model-driven ComNet, through extensive simulation and real-time video transmission using a 5G rapid prototyping system for an over-the-air (OTA) test. We find a performance gap between the simulation and the OTA test caused by the discrepancy between the channel model for offline training and the real environment. We develop a novel online training system, which is called SwitchNet receiver, to address this issue. This receiver has a flexible and extendable architecture and can adapt to real channels by training only several parameters online. From the OTA test, the AI-aided OFDM receivers, especially the SwitchNet receiver, are robust to real environments and promising for future communication systems. We discuss potential challenges and future research inspired by our initial study in this paper.

Citations (33)

Summary

We haven't generated a summary for this paper yet.