Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Products of Many Large Random Matrices and Gradients in Deep Neural Networks (1812.05994v1)

Published 14 Dec 2018 in math.PR, math-ph, math.MP, and stat.ML

Abstract: We study products of random matrices in the regime where the number of terms and the size of the matrices simultaneously tend to infinity. Our main theorem is that the logarithm of the $\ell_2$ norm of such a product applied to any fixed vector is asymptotically Gaussian. The fluctuations we find can be thought of as a finite temperature correction to the limit in which first the size and then the number of matrices tend to infinity. Depending on the scaling limit considered, the mean and variance of the limiting Gaussian depend only on either the first two or the first four moments of the measure from which matrix entries are drawn. We also obtain explicit error bounds on the moments of the norm and the Kolmogorov-Smirnov distance to a Gaussian. Finally, we apply our result to obtain precise information about the stability of gradients in randomly initialized deep neural networks with ReLU activations. This provides a quantitative measure of the extent to which the exploding and vanishing gradient problem occurs in a fully connected neural network with ReLU activations and a given architecture.

Citations (72)

Summary

We haven't generated a summary for this paper yet.