Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reissner-Mindlin shell theory based on tangential differential calculus (1812.05596v2)

Published 11 Dec 2018 in cs.NA and cs.CE

Abstract: The linear Reissner-Mindlin shell theory is reformulated in the frame of the tangential differential calculus (TDC) using a global Cartesian coordinate system. The rotation of the normal vector is modelled with a difference vector approach. The resulting equations are applicable to both explicitly and implicitly defined shells, because the employed surface operators do not necessarily rely on a parametrization. Hence, shell analysis on surfaces implied by level-set functions is enabled, but also the classical case of parametrized surfaces is captured. As a consequence, the proposed TDC-based formulation is more general and may also be used in recent finite element approaches such as the TraceFEM and CutFEM where a parametrization of the middle surface is not required. Herein, the numerical results are obtained by isogeometric analysis using NURBS as trial and test functions for classical and new benchmark tests. In the residual errors, optimal higher-order convergence rates are confirmed when the involved physical fields are sufficiently smooth.

Citations (22)

Summary

We haven't generated a summary for this paper yet.