Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Semi-Supervised Learning Meets Transfer Learning: Training Strategies, Models and Datasets (1812.05313v1)

Published 13 Dec 2018 in cs.CV

Abstract: Semi-Supervised Learning (SSL) has been proved to be an effective way to leverage both labeled and unlabeled data at the same time. Recent semi-supervised approaches focus on deep neural networks and have achieved promising results on several benchmarks: CIFAR10, CIFAR100 and SVHN. However, most of their experiments are based on models trained from scratch instead of pre-trained models. On the other hand, transfer learning has demonstrated its value when the target domain has limited labeled data. Here comes the intuitive question: is it possible to incorporate SSL when fine-tuning a pre-trained model? We comprehensively study how SSL methods starting from pretrained models perform under varying conditions, including training strategies, architecture choice and datasets. From this study, we obtain several interesting and useful observations. While practitioners have had an intuitive understanding of these observations, we do a comprehensive emperical analysis and demonstrate that: (1) the gains from SSL techniques over a fully-supervised baseline are smaller when trained from a pre-trained model than when trained from random initialization, (2) when the domain of the source data used to train the pre-trained model differs significantly from the domain of the target task, the gains from SSL are significantly higher and (3) some SSL methods are able to advance fully-supervised baselines (like Pseudo-Label). We hope our studies can deepen the understanding of SSL research and facilitate the process of developing more effective SSL methods to utilize pre-trained models. Code is now available at github.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hong-Yu Zhou (50 papers)
  2. Avital Oliver (9 papers)
  3. Jianxin Wu (82 papers)
  4. Yefeng Zheng (197 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.