Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private Polynomial Computation from Lagrange Encoding (1812.04142v3)

Published 10 Dec 2018 in cs.IT, cs.CR, and math.IT

Abstract: Private computation is a generalization of private information retrieval, in which a user is able to compute a function on a distributed dataset without revealing the identity of that function to the servers. In this paper it is shown that Lagrange encoding, a powerful technique for encoding Reed-Solomon codes, enables private computation in many cases of interest. In particular, we present a scheme that enables private computation of polynomials of any degree on Lagrange encoded data, while being robust to Byzantine and straggling servers, and to servers colluding to attempt to deduce the identities of the functions to be evaluated. Moreover, incorporating ideas from the well-known Shamir secret sharing scheme allows the data itself to be concealed from the servers as well. Our results extend private computation to high degree polynomials and to data-privacy, and reveal a tight connection between private computation and coded computation.

Citations (45)

Summary

We haven't generated a summary for this paper yet.