Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Adaptive spectral solution method for the Landau and Lenard-Balescu equations (1812.04084v1)

Published 10 Dec 2018 in physics.comp-ph

Abstract: We present an adaptive spectral method for solving the Landau/Fokker-Planck equation for electron-ion systems. The heart of the algorithm is an expansion in Laguerre polynomials, which has several advantages, including automatic conservation of both energy and particles without the need for any special discretization or time-stepping schemes. One drawback is the $O(N3)$ memory requirement, where $N$ is the number of polynomials used. This can impose an inconvenient limit in cases of practical interest, such as when two particle species have widely separated temperatures. The algorithm we describe here addresses this problem by periodically re-projecting the solution onto a judicious choice of new basis functions that are still Laguerre polynomials but have arguments adapted to the current physical conditions. This results in a reduction in the number of polynomials needed, at the expense of increased solution time. Because the equations are solved with little difficulty, this added time is not of much concern compared to the savings in memory. To demonstrate the algorithm, we solve several relaxation problems that could not be computed with the spectral method without re-projection. Another major advantage of this method is that it can be used for collision operators more complicated than that of the Landau equation, and we demonstrate this here by using it to solve the non-degenerate quantum Lenard-Balescu equation for a hydrogen plasma.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.