Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taxi Demand-Supply Forecasting: Impact of Spatial Partitioning on the Performance of Neural Networks (1812.03699v1)

Published 10 Dec 2018 in cs.LG and stat.ML

Abstract: In this paper, we investigate the significance of choosing an appropriate tessellation strategy for a spatio-temporal taxi demand-supply modeling framework. Our study compares (i) the variable-sized polygon based Voronoi tessellation, and (ii) the fixed-sized grid based Geohash tessellation, using taxi demand-supply GPS data for the cities of Bengaluru, India and New York, USA. Long Short-Term Memory (LSTM) networks are used for modeling and incorporating information from spatial neighbors into the model. We find that the LSTM model based on input features extracted from a variable-sized polygon tessellation yields superior performance over the LSTM model based on fixed-sized grid tessellation. Our study highlights the need to explore multiple spatial partitioning techniques for improving the prediction performance in neural network models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.