Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Irreducible matrix resolution of the elasticity tensor for symmetry systems (1812.03367v1)

Published 8 Dec 2018 in physics.class-ph, cond-mat.mtrl-sci, math-ph, and math.MP

Abstract: In linear elasticity, a fourth order elasticity (stiffness) tensor of 21 independent components completely describes deformation properties of a material. Due to Voigt, this tensor is conventionally represented by a $6\times 6$ symmetric matrix. This classical matrix representation does not conform with the irreducible decomposition of the elasticity tensor. In this paper, we construct two alternative matrix representations. The $3\times 7$ matrix representation is in a correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional representation of the elasticity tensor by three $3\times 3$ matrices is suitable for description the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)