Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Bounds on the Rényi Entropy via Majorization with Applications to Guessing and Compression (1812.03324v1)

Published 8 Dec 2018 in cs.IT, math.IT, and math.PR

Abstract: This paper provides tight bounds on the R\'enyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the R\'enyi entropy of a discrete random variable with a finite support is derived as a function of the size of the support, and the ratio of the maximal to minimal probability masses. This work was inspired by the recently published paper by Cicalese et al., which is focused on the Shannon entropy, and it strengthens and generalizes the results of that paper to R\'enyi entropies of arbitrary positive orders. In view of these generalized bounds and the works by Arikan and Campbell, non-asymptotic bounds are derived for guessing moments and lossless data compression of discrete memoryless sources.

Citations (29)

Summary

We haven't generated a summary for this paper yet.