Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Knowledge Graph Embedding using Background Taxonomic Information (1812.03235v1)

Published 7 Dec 2018 in cs.LG and stat.ML

Abstract: Knowledge graphs are used to represent relational information in terms of triples. To enable learning about domains, embedding models, such as tensor factorization models, can be used to make predictions of new triples. Often there is background taxonomic information (in terms of subclasses and subproperties) that should also be taken into account. We show that existing fully expressive (a.k.a. universal) models cannot provably respect subclass and subproperty information. We show that minimal modifications to an existing knowledge graph completion method enables injection of taxonomic information. Moreover, we prove that our model is fully expressive, assuming a lower-bound on the size of the embeddings. Experimental results on public knowledge graphs show that despite its simplicity our approach is surprisingly effective.

Citations (39)

Summary

We haven't generated a summary for this paper yet.