Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gated Attentive-Autoencoder for Content-Aware Recommendation (1812.02869v1)

Published 7 Dec 2018 in cs.IR

Abstract: The rapid growth of Internet services and mobile devices provides an excellent opportunity to satisfy the strong demand for the personalized item or product recommendation. However, with the tremendous increase of users and items, personalized recommender systems still face several challenging problems: (1) the hardness of exploiting sparse implicit feedback; (2) the difficulty of combining heterogeneous data. To cope with these challenges, we propose a gated attentive-autoencoder (GATE) model, which is capable of learning fused hidden representations of items' contents and binary ratings, through a neural gating structure. Based on the fused representations, our model exploits neighboring relations between items to help infer users' preferences. In particular, a word-level and a neighbor-level attention module are integrated with the autoencoder. The word-level attention learns the item hidden representations from items' word sequences, while favoring informative words by assigning larger attention weights. The neighbor-level attention learns the hidden representation of an item's neighborhood by considering its neighbors in a weighted manner. We extensively evaluate our model with several state-of-the-art methods and different validation metrics on four real-world datasets. The experimental results not only demonstrate the effectiveness of our model on top-N recommendation but also provide interpretable results attributed to the attention modules.

Citations (55)

Summary

We haven't generated a summary for this paper yet.