Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Probabilistic Degree of OR over the Reals (1812.01982v2)

Published 5 Dec 2018 in cs.CC

Abstract: We study the probabilistic degree over reals of the OR function on $n$ variables. For an error parameter $\epsilon$ in (0,1/3), the $\epsilon$-error probabilistic degree of any Boolean function $f$ over reals is the smallest non-negative integer $d$ such that the following holds: there exists a distribution $D$ of polynomials entirely supported on polynomials of degree at most $d$ such that for all $z \in {0,1}n$, we have $Pr_{P \sim D} [P(z) = f(z) ] \geq 1- \epsilon$. It is known from the works of Tarui ({Theoret. Comput. Sci.} 1993) and Beigel, Reingold, and Spielman ({ Proc. 6th CCC} 1991), that the $\epsilon$-error probabilistic degree of the OR function is at most $O(\log n.\log 1/\epsilon)$. Our first observation is that this can be improved to $O{\log {{n}\choose{\leq \log 1/\epsilon}}}$, which is better for small values of $\epsilon$. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials $P$ in the support of the distribution $D$ have the following special structure:$P = 1 - (1-L_1).(1-L_2)...(1-L_t)$, where each $L_i(x_1,..., x_n)$ is a linear form in the variables $x_1,...,x_n$, i.e., the polynomial $1-P(x_1,...,x_n)$ is a product of affine forms. We show that the $\epsilon$-error probabilistic degree of OR when restricted to polynomials of the above form is $\Omega ( \log a/\log2 a )$ where $a = \log {{n}\choose{\leq \log 1/\epsilon}}$. Thus matching the above upper bound (up to poly-logarithmic factors).

Citations (2)

Summary

We haven't generated a summary for this paper yet.