Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voice Disorder Detection Using Long Short Term Memory (LSTM) Model (1812.01779v1)

Published 4 Dec 2018 in q-bio.QM, cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Automated detection of voice disorders with computational methods is a recent research area in the medical domain since it requires a rigorous endoscopy for the accurate diagnosis. Efficient screening methods are required for the diagnosis of voice disorders so as to provide timely medical facilities in minimal resources. Detecting Voice disorder using computational methods is a challenging problem since audio data is continuous due to which extracting relevant features and applying machine learning is hard and unreliable. This paper proposes a Long short term memory model (LSTM) to detect pathological voice disorders and evaluates its performance in a real 400 testing samples without any labels. Different feature extraction methods are used to provide the best set of features before applying LSTM model for classification. The paper describes the approach and experiments that show promising results with 22% sensitivity, 97% specificity and 56% unweighted average recall.

Citations (16)

Summary

We haven't generated a summary for this paper yet.