Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target Set Selection parameterized by vertex cover and more (1812.01482v5)

Published 4 Dec 2018 in cs.CC, cs.DS, and cs.SI

Abstract: Given a simple, undirected graph $G$ with a threshold function $\tau:V(G) \rightarrow \mathbb{N}$, the \textsc{Target Set Selection} (TSS) problem is about choosing a minimum cardinality set, say $S \subseteq V(G)$, such that starting a diffusion process with $S$ as its seed set will eventually result in activating all the nodes in $G$. For any non-negative integer $i$, we say a set $T\subseteq V(G)$ is a "degree-$i$ modulator" of $G$ if the degree of any vertex in the graph $G-T$ is at most $i$. Degree-$0$ modulators of a graph are precisely its vertex covers. Consider a graph $G$ on $n$ vertices and $m$ edges. We have the following results on the TSS problem: -> It was shown by Nichterlein et al. [Social Network Analysis and Mining, 2013] that it is possible to compute an optimal-sized target set in $O(2{(2{t}+1)t}\cdot m)$ time, where $t$ denotes the cardinality of a minimum degree-$0$ modulator of $G$. We improve this result by designing an algorithm running in time $2{O(t\log t)}n{O(1)}$. -> We design a $2{2{O(t)}}n{O(1)}$ time algorithm to compute an optimal target set for $G$, where $t$ is the size of a minimum degree-$1$ modulator of $G$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.