Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic salt deposits segmentation: A deep learning approach (1812.01429v1)

Published 21 Nov 2018 in cs.LG and stat.ML

Abstract: One of the most important applications of seismic reflection is the hydrocarbon exploration which is closely related to salt deposits analysis. This problem is very important even nowadays due to it's non-linear nature. Taking into account the recent developments in deep learning networks TGS-NOPEC Geophysical Company hosted the Kaggle competition for salt deposits segmentation problem in seismic image data. In this paper, we demonstrate the great performance of several novel deep learning techniques merged into a single neural network which achieved the 27th place (top 1%) in the mentioned competition. Using a U-Net with ResNeXt-50 encoder pre-trained on ImageNet as our base architecture, we implemented Spatial-Channel Squeeze & Excitation, Lovasz loss, CoordConv and Hypercolumn methods. The source code for our solution is made publicly available at https://github.com/K-Mike/Automatic-salt-deposits-segmentation.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com