Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Continuous Domain adaptation for Healthcare (1812.01281v1)

Published 4 Dec 2018 in cs.CV and cs.LG

Abstract: Deep learning algorithms have demonstrated tremendous success on challenging medical imaging problems. However, post-deployment, these algorithms are susceptible to data distribution variations owing to \emph{limited data issues} and \emph{diversity} in medical images. In this paper, we propose \emph{ContextNets}, a generic memory-augmented neural network framework for semantic segmentation to achieve continuous domain adaptation without the necessity of retraining. Unlike existing methods which require access to entire source and target domain images, our algorithm can adapt to a target domain with a few similar images. We condition the inference on any new input with features computed on its support set of images (and masks, if available) through contextual embeddings to achieve site-specific adaptation. We demonstrate state-of-the-art domain adaptation performance on the X-ray lung segmentation problem from three independent cohorts that differ in disease type, gender, contrast and intensity variations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (10)

Summary

We haven't generated a summary for this paper yet.