Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 45 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 206 tok/s Pro
2000 character limit reached

Cross-Classification Clustering: An Efficient Multi-Object Tracking Technique for 3-D Instance Segmentation in Connectomics (1812.01157v2)

Published 4 Dec 2018 in cs.CV

Abstract: Pixel-accurate tracking of objects is a key element in many computer vision applications, often solved by iterated individual object tracking or instance segmentation followed by object matching. Here we introduce cross-classification clustering (3C), a technique that simultaneously tracks complex, interrelated objects in an image stack. The key idea in cross-classification is to efficiently turn a clustering problem into a classification problem by running a logarithmic number of independent classifications per image, letting the cross-labeling of these classifications uniquely classify each pixel to the object labels. We apply the 3C mechanism to achieve state-of-the-art accuracy in connectomics -- the nanoscale mapping of neural tissue from electron microscopy volumes. Our reconstruction system increases scalability by an order of magnitude over existing single-object tracking methods (such as flood-filling networks). This scalability is important for the deployment of connectomics pipelines, since currently the best performing techniques require computing infrastructures that are beyond the reach of most laboratories. Our algorithm may offer benefits in other domains that require pixel-accurate tracking of multiple objects, such as segmentation of videos and medical imagery.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.