Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ZerNet: Convolutional Neural Networks on Arbitrary Surfaces via Zernike Local Tangent Space Estimation (1812.01082v3)

Published 3 Dec 2018 in cs.CV and cs.CG

Abstract: In this paper, we propose a novel formulation to extend CNNs to two-dimensional (2D) manifolds using orthogonal basis functions, called Zernike polynomials. In many areas, geometric features play a key role in understanding scientific phenomena. Thus, an ability to codify geometric features into a mathematical quantity can be critical. Recently, convolutional neural networks (CNNs) have demonstrated the promising capability of extracting and codifying features from visual information. However, the progress has been concentrated in computer vision applications where there exists an inherent grid-like structure. In contrast, many geometry processing problems are defined on curved surfaces, and the generalization of CNNs is not quite trivial. The difficulties are rooted in the lack of key ingredients such as the canonical grid-like representation, the notion of consistent orientation, and a compatible local topology across the domain. In this paper, we prove that the convolution of two functions can be represented as a simple dot product between Zernike polynomial coefficients; and the rotation of a convolution kernel is essentially a set of 2-by-2 rotation matrices applied to the coefficients. As such, the key contribution of this work resides in a concise but rigorous mathematical generalization of the CNN building blocks.

Citations (21)

Summary

We haven't generated a summary for this paper yet.