Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DQ Scheduler: Deep Reinforcement Learning Based Controller Synchronization in Distributed SDN (1812.00852v1)

Published 3 Dec 2018 in cs.NI

Abstract: In distributed software-defined networks (SDN), multiple physical SDN controllers, each managing a network domain, are implemented to balance centralized control, scalability and reliability requirements. In such networking paradigm, controllers synchronize with each other to maintain a logically centralized network view. Despite various proposals of distributed SDN controller architectures, most existing works only assume that such logically centralized network view can be achieved with some synchronization designs, but the question of how exactly controllers should synchronize with each other to maximize the benefits of synchronization under the eventual consistency assumptions is largely overlooked. To this end, we formulate the controller synchronization problem as a Markov Decision Process (MDP) and apply reinforcement learning techniques combined with deep neural network to train a smart controller synchronization policy, which we call the Deep-Q (DQ) Scheduler. Evaluation results show that DQ Scheduler outperforms the antientropy algorithm implemented in the ONOS controller by up to 95.2% for inter-domain routing tasks.

Citations (23)

Summary

We haven't generated a summary for this paper yet.