Tensor-generated fractals: Using tensor decompositions for creating self-similar patterns (1812.00814v1)
Abstract: The term fractal describes a class of complex structures exhibiting self-similarity across different scales. Fractal patterns can be created by using various techniques such as finite subdivision rules and iterated function systems. In this paper, we will present a method for the construction of geometric fractals that exploits Kronecker products and tensor decompositions, which can be regarded as a generalization of matrix factorizations. We will show how to create several well-known examples for one-, two-, and three-dimensional self-similar structures. Additionally, the proposed method will be extended to the construction of fractals in arbitrary dimensions.