Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation with Feature Maps for Image Classification (1812.00660v1)

Published 3 Dec 2018 in cs.LG, cs.AI, and cs.CV

Abstract: The model reduction problem that eases the computation costs and latency of complex deep learning architectures has received an increasing number of investigations owing to its importance in model deployment. One promising method is knowledge distillation (KD), which creates a fast-to-execute student model to mimic a large teacher network. In this paper, we propose a method, called KDFM (Knowledge Distillation with Feature Maps), which improves the effectiveness of KD by learning the feature maps from the teacher network. Two major techniques used in KDFM are shared classifier and generative adversarial network. Experimental results show that KDFM can use a four layers CNN to mimic DenseNet-40 and use MobileNet to mimic DenseNet-100. Both student networks have less than 1\% accuracy loss comparing to their teacher models for CIFAR-100 datasets. The student networks are 2-6 times faster than their teacher models for inference, and the model size of MobileNet is less than half of DenseNet-100's.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wei-Chun Chen (2 papers)
  2. Chia-Che Chang (11 papers)
  3. Chien-Yu Lu (2 papers)
  4. Che-Rung Lee (8 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.