Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Facets of the Cone of Totally Balanced Games (1812.00576v3)

Published 3 Dec 2018 in math.CO

Abstract: The class of totally balanced games is a class of transferable-utility coalitional games providing important models of cooperative behavior used in mathematical economics. They coincide with market games of Shapley and Shubik and every totally balanced game is also representable as the minimum of a finite set of additive games. In this paper we characterize the polyhedral cone of totally balanced games by describing its facets. Our main result is that there is a correspondence between facet-defining inequalities for the cone and the class of special balanced systems of coalitions, the so-called irreducible min-balanced systems. Our method is based on refining the notion of balancedness introduced by Shapley. We also formulate a conjecture about what are the facets of the cone of exact games, which addresses an open problem appearing in the literature.

Summary

We haven't generated a summary for this paper yet.