Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Graph Theory of Rook Placements (1812.00533v2)

Published 3 Dec 2018 in math.CO

Abstract: Two boards are rook equivalent if they have the same number of non-attacking rook placements for any number of rooks. Define a rook equivalence graph of an equivalence set of Ferrers boards by specifying that two boards are connected by an edge if you can obtain one of the boards by moving squares in the other board out of one column and into a singe other column. Given such a graph, we categorize which boards will yield connected graphs. We also provide some cases where common graphs will or will not be the graph for some set of rook equivalent Ferrers boards. Finally, we extend this graph definition to the $m$-level rook placement generalization developed by Briggs and Remmel. This yields a graph on the set of rook equivalent singleton boards, and we characterize which singleton boards give rise to a connected graph.

Summary

We haven't generated a summary for this paper yet.