The Dunkl-Cherednik Deformation of a Howe duality (1812.00502v3)
Abstract: We consider the deformed versions of the classical Howe dual pairs $(O(r),\mathfrak{s}\mathfrak{l}(2))$ and $(O(r),\mathfrak{s}\mathfrak{p}\mathfrak{o}(2|2))$ in the context of a rational Cherednik algebra $H_c=H_c(W,\mathfrak{h})$ associated to a finite Coxeter group $W$ at the parameters $c$ and $t=1$. For the first pair, we compute the centraliser of the well-known copy of $\mathfrak{s}\cong\mathfrak{s}\mathfrak{l}(2)$ inside $H_c$. For the second pair, we show that the classical copy of $\mathfrak{g}\cong\mathfrak{s}\mathfrak{p}\mathfrak{o}(2|2)$ inside the Weyl-Clifford algebra $\mathcal{W}\otimes\mathcal{C}$ deforms to a Lie superalgebra inside $H_c\otimes\mathcal{C}$ and compute its centraliser algebra. For a generic parameter $c$ such that the standard $H_c$-module is unitary, we compute the joint $((H_c){\mathfrak{s}},\mathfrak{s})$- and $((H_c\otimes\mathcal{C}){\mathfrak{g}},\mathfrak{g})$-decompositions of the relevant modules.