Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Gradient MCMC with Repulsive Forces (1812.00071v2)

Published 30 Nov 2018 in stat.ML and cs.LG

Abstract: We propose a unifying view of two different Bayesian inference algorithms, Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) and Stein Variational Gradient Descent (SVGD), leading to improved and efficient novel sampling schemes. We show that SVGD combined with a noise term can be framed as a multiple chain SG-MCMC method. Instead of treating each parallel chain independently from others, our proposed algorithm implements a repulsive force between particles, avoiding collapse and facilitating a better exploration of the parameter space. We also show how the addition of this noise term is necessary to obtain a valid SG-MCMC sampler, a significant difference with SVGD. Experiments with both synthetic distributions and real datasets illustrate the benefits of the proposed scheme.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com