Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Local Video Denoising by CNN (1811.12758v2)

Published 30 Nov 2018 in cs.CV

Abstract: Non-local patch based methods were until recently state-of-the-art for image denoising but are now outperformed by CNNs. Yet they are still the state-of-the-art for video denoising, as video redundancy is a key factor to attain high denoising performance. The problem is that CNN architectures are hardly compatible with the search for self-similarities. In this work we propose a new and efficient way to feed video self-similarities to a CNN. The non-locality is incorporated into the network via a first non-trainable layer which finds for each patch in the input image its most similar patches in a search region. The central values of these patches are then gathered in a feature vector which is assigned to each image pixel. This information is presented to a CNN which is trained to predict the clean image. We apply the proposed architecture to image and video denoising. For the latter patches are searched for in a 3D spatio-temporal volume. The proposed architecture achieves state-of-the-art results. To the best of our knowledge, this is the first successful application of a CNN to video denoising.

Citations (37)

Summary

We haven't generated a summary for this paper yet.