Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Markov chain Monte Carlo Methods For Lattice Gaussian Sampling:Convergence Analysis and Enhancement (1811.12719v1)

Published 30 Nov 2018 in cs.IT and math.IT

Abstract: Sampling from lattice Gaussian distribution has emerged as an important problem in coding, decoding and cryptography. In this paper, the classic Gibbs algorithm from Markov chain Monte Carlo (MCMC) methods is demonstrated to be geometrically ergodic for lattice Gaussian sampling, which means the Markov chain arising from it converges exponentially fast to the stationary distribution. Meanwhile, the exponential convergence rate of Markov chain is also derived through the spectral radius of forward operator. Then, a comprehensive analysis regarding to the convergence rate is carried out and two sampling schemes are proposed to further enhance the convergence performance. The first one, referred to as Metropolis-within-Gibbs (MWG) algorithm, improves the convergence by refining the state space of the univariate sampling. On the other hand, the blocked strategy of Gibbs algorithm, which performs the sampling over multivariate at each Markov move, is also shown to yield a better convergence rate than the traditional univariate sampling. In order to perform blocked sampling efficiently, Gibbs-Klein (GK) algorithm is proposed, which samples block by block using Klein's algorithm. Furthermore, the validity of GK algorithm is demonstrated by showing its ergodicity. Simulation results based on MIMO detections are presented to confirm the convergence gain brought by the proposed Gibbs sampling schemes.

Citations (9)

Summary

We haven't generated a summary for this paper yet.