Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification is a Strong Baseline for Deep Metric Learning (1811.12649v2)

Published 30 Nov 2018 in cs.CV

Abstract: Deep metric learning aims to learn a function mapping image pixels to embedding feature vectors that model the similarity between images. Two major applications of metric learning are content-based image retrieval and face verification. For the retrieval tasks, the majority of current state-of-the-art (SOTA) approaches are triplet-based non-parametric training. For the face verification tasks, however, recent SOTA approaches have adopted classification-based parametric training. In this paper, we look into the effectiveness of classification based approaches on image retrieval datasets. We evaluate on several standard retrieval datasets such as CAR-196, CUB-200-2011, Stanford Online Product, and In-Shop datasets for image retrieval and clustering, and establish that our classification-based approach is competitive across different feature dimensions and base feature networks. We further provide insights into the performance effects of subsampling classes for scalable classification-based training, and the effects of binarization, enabling efficient storage and computation for practical applications.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com