Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Particle Probability Hypothesis Density Filter based on Pairwise Markov Chains (1811.12211v1)

Published 28 Nov 2018 in eess.SP, cs.AI, and cs.SY

Abstract: Most multi-target tracking filters assume that one target and its observation follow a Hidden Markov Chain (HMC) model, but the implicit independence assumption of HMC model is invalid in many practical applications, and a Pairwise Markov Chain (PMC) model is more universally suitable than traditional HMC model. A particle probability hypothesis density filter based on PMC model (PF-PMC-PHD) is proposed for the nonlinear multi-target tracking system. Simulation results show the effectiveness of PF-PMC-PHD filter, and that the tracking performance of PF-PMC-PHD filter is superior to the particle PHD filter based on HMC model in a scenario where we kept the local physical properties of nonlinear and Gaussian HMC models while relaxing their independence assumption.

Citations (7)

Summary

We haven't generated a summary for this paper yet.