Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Neural Network Ensembles (1811.12188v1)

Published 27 Nov 2018 in cs.LG and stat.ML

Abstract: Ensembles of neural networks (NNs) have long been used to estimate predictive uncertainty; a small number of NNs are trained from different initialisations and sometimes on differing versions of the dataset. The variance of the ensemble's predictions is interpreted as its epistemic uncertainty. The appeal of ensembling stems from being a collection of regular NNs - this makes them both scalable and easily implementable. They have achieved strong empirical results in recent years, often presented as a practical alternative to more costly Bayesian NNs (BNNs). The departure from Bayesian methodology is of concern since the Bayesian framework provides a principled, widely-accepted approach to handling uncertainty. In this extended abstract we derive and implement a modified NN ensembling scheme, which provides a consistent estimator of the Bayesian posterior in wide NNs - regularising parameters about values drawn from a prior distribution.

Citations (4)

Summary

We haven't generated a summary for this paper yet.