Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DeepPos: Deep Supervised Autoencoder Network for CSI Based Indoor Localization (1811.12182v1)

Published 27 Nov 2018 in eess.SP, cs.AI, cs.LG, and stat.ML

Abstract: The widespread mobile devices facilitated the emergence of many new applications and services. Among them are location-based services (LBS) that provide services based on user's location. Several techniques have been presented to enable LBS even in indoor environments where Global Positioning System (GPS) has low localization accuracy. These methods use some environment measurements (like Channel State Information (CSI) or Received Signal Strength (RSS)) for user localization. In this paper, we will use CSI and a novel deep learning algorithm to design a robust and efficient system for indoor localization. More precisely, we use supervised autoencoder (SAE) to model the environment using the data collected during the training phase. Then, during the testing phase, we use the trained model and estimate the coordinates of the unknown point by checking different possible labels. Unlike the previous fingerprinting approaches, in this work, we do not store the {CSI/RSS} of fingerprints and instead we model the environment only with a single SAE. The performance of the proposed scheme is then evaluated in two indoor environments and compared with that of similar approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Peyman Yazdanian (1 paper)
  2. Vahid Pourahmadi (14 papers)
Citations (11)