Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantizing Euclidean motions via double-coset decomposition (1811.11640v1)

Published 28 Nov 2018 in cs.RO

Abstract: Concepts from mathematical crystallography and group theory are used here to quantize the group of rigid-body motions, resulting in a "motion alphabet" with which to express robot motion primitives. From these primitives it is possible to develop a dictionary of physical actions. Equipped with an alphabet of the sort developed here, intelligent actions of robots in the world can be approximated with finite sequences of characters, thereby forming the foundation of a language in which to articulate robot motion. In particular, we use the discrete handedness-preserving symmetries of macromolecular crystals (known in mathematical crystallography as Sohncke space groups) to form a coarse discretization of the space $\rm{SE}(3)$ of rigid-body motions. This discretization is made finer by subdividing using the concept of double-coset decomposition. More specifically, a very efficient, equivolumetric quantization of spatial motion can be defined using the group-theoretic concept of a double-coset decomposition of the form $\Gamma \backslash \rm{SE}(3) / \Delta$, where $\Gamma$ is a Sohncke space group and $\Delta$ is a finite group of rotational symmetries such as those of the icosahedron. The resulting discrete alphabet is based on a very uniform sampling of $\rm{SE}(3)$ and is a tool for describing the continuous trajectories of robots and humans. The general "signals to symbols" problem in artificial intelligence is cast in this framework for robots moving continuously in the world, and we present a coarse-to-fine search scheme here to efficiently solve this decoding problem in practice.

Citations (9)

Summary

We haven't generated a summary for this paper yet.