Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Spatiotemporal Feature Learning via Video Rotation Prediction (1811.11387v2)

Published 28 Nov 2018 in cs.CV

Abstract: The success of deep neural networks generally requires a vast amount of training data to be labeled, which is expensive and unfeasible in scale, especially for video collections. To alleviate this problem, in this paper, we propose 3DRotNet: a fully self-supervised approach to learn spatiotemporal features from unlabeled videos. A set of rotations are applied to all videos, and a pretext task is defined as prediction of these rotations. When accomplishing this task, 3DRotNet is actually trained to understand the semantic concepts and motions in videos. In other words, it learns a spatiotemporal video representation, which can be transferred to improve video understanding tasks in small datasets. Our extensive experiments successfully demonstrate the effectiveness of the proposed framework on action recognition, leading to significant improvements over the state-of-the-art self-supervised methods. With the self-supervised pre-trained 3DRotNet from large datasets, the recognition accuracy is boosted up by 20.4% on UCF101 and 16.7% on HMDB51 respectively, compared to the models trained from scratch.

Citations (149)

Summary

We haven't generated a summary for this paper yet.