Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Control By Regulation-Triggered Batch Least-Squares Estimation of Non-Observable Parameters (1811.10833v1)

Published 27 Nov 2018 in math.OC and cs.SY

Abstract: The paper extends a recently proposed indirect, certainty-equivalence, event-triggered adaptive control scheme to the case of non-observable parameters. The extension is achieved by using a novel Batch Least-Squares Identifier (BaLSI), which is activated at the times of the events. The BaLSI guarantees the finite-time asymptotic constancy of the parameter estimates and the fact that the trajectories of the closed-loop system follow the trajectories of the nominal closed-loop system ("nominal" in the sense of the asymptotic parameter estimate, not in the sense of the true unknown parameter). Thus, if the nominal feedback guarantees global asymptotic stability and local exponential stability, then unlike conventional adaptive control, the newly proposed event-triggered adaptive scheme guarantees global asymptotic regulation with a uniform exponential convergence rate. The developed adaptive scheme is tested to a well-known control problem: the state regulation of the wing-rock model. Comparisons with other adaptive schemes are provided for this particular problem.

Citations (36)

Summary

We haven't generated a summary for this paper yet.