Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

sCAKE: Semantic Connectivity Aware Keyword Extraction (1811.10831v1)

Published 27 Nov 2018 in cs.IR

Abstract: Keyword Extraction is an important task in several text analysis endeavors. In this paper, we present a critical discussion of the issues and challenges ingraph-based keyword extraction methods, along with comprehensive empirical analysis. We propose a parameterless method for constructing graph of text that captures the contextual relation between words. A novel word scoring method is also proposed based on the connection between concepts. We demonstrate that both proposals are individually superior to those followed by the state-of-the-art graph-based keyword extraction algorithms. Combination of the proposed graph construction and scoring methods leads to a novel, parameterless keyword extraction method (sCAKE) based on semantic connectivity of words in the document. Motivated by limited availability of NLP tools for several languages, we also design and present a language-agnostic keyword extraction (LAKE) method. We eliminate the need of NLP tools by using a statistical filter to identify candidate keywords before constructing the graph. We show that the resulting method is a competent solution for extracting keywords from documents oflanguages lacking sophisticated NLP support.

Citations (61)

Summary

We haven't generated a summary for this paper yet.