Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An effective equidistribution result for $SL(2,R)\ltimes(R^2)^{\oplus k}$ and application to inhomogeneous quadratic forms (1811.10340v1)

Published 26 Nov 2018 in math.NT and math.DS

Abstract: Let $G=$SL$(2,R)\ltimes(R2){\oplus k}$ and let $\Gamma$ be a congruence subgroup of SL$(2,Z)\ltimes(Z2){\oplus k}$. We prove a polynomially effective asymptotic equidistribution result for special types of unipotent orbits in $\Gamma\backslash G$ which project to pieces of closed horocycles in SL$(2,Z)\backslash$SL$(2,R)$. As an application, we prove an effective quantitative Oppenheim type result for the quadratic form $(m_1-\alpha)2+(m_2-\beta)2-(m_3-\alpha)2-(m_4-\beta)2$, for $(\alpha,\beta)$ of Diophantine type, following the approach by Marklof [24] using theta sums.

Summary

We haven't generated a summary for this paper yet.