Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rough center manifolds (1811.10037v4)

Published 25 Nov 2018 in math.PR

Abstract: Since the breakthrough in rough paths theory for stochastic ordinary differential equations (SDEs), there has been a strong interest in investigating the rough differential equation (RDE) approach and its numerous applications. Rough path techniques can stay closer to deterministic analytical methods and have the potential to transfer many pathwise ordinary differential equation (ODE) techniques more directly to a stochastic setting. However, there are few works that analyze dynamical properties of RDEs and connect the rough path / regularity structures, ODE and random dynamical systems approaches. Here we contribute to this aspect and analyze invariant manifolds for RDEs. By means of a suitably discretized Lyapunov-Perron-type method we prove the existence and regularity of local center manifolds for such systems. Our method directly works with the RDE and we exploit rough paths estimates to obtain the relevant contraction properties of the Lyapunov-Perron map.

Summary

We haven't generated a summary for this paper yet.