Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-scale aggregation of phase information for reducing computational cost of CNN based DOA estimation (1811.08552v1)

Published 20 Nov 2018 in eess.AS, cs.LG, and cs.SD

Abstract: In a recent work on direction-of-arrival (DOA) estimation of multiple speakers with convolutional neural networks (CNNs), the phase component of short-time Fourier transform (STFT) coefficients of the microphone signal is given as input and small filters are used to learn the phase relations between neighboring microphones. Due to this chosen filter size, $M-1$ convolution layers are required to achieve the best performance for a microphone array with M microphones. For arrays with large number of microphones, this requirement leads to a high computational cost making the method practically infeasible. In this work, we propose to use systematic dilations of the convolution filters in each of the convolution layers of the previously proposed CNN for expansion of the receptive field of the filters to reduce the computational cost of the method. Different strategies for expansion of the receptive field of the filters for a specific microphone array are explored. With experimental analysis of the different strategies, it is shown that an aggressive expansion strategy results in a considerable reduction in computational cost while a relatively gradual expansion of the receptive field exhibits the best DOA estimation performance along with reduction in the computational cost.

Citations (6)

Summary

We haven't generated a summary for this paper yet.