Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LGLG-WPCA: An Effective Texture-based Method for Face Recognition (1811.08345v4)

Published 20 Nov 2018 in cs.CV

Abstract: In this paper, we proposed an effective face feature extraction method by Learning Gabor Log-Euclidean Gaussian with Whitening Principal Component Analysis (WPCA), called LGLG-WPCA. The proposed method learns face features from the embedded multivariate Gaussian in Gabor wavelet domain; it has the robust performance to adverse conditions such as varying poses, skin aging and uneven illumination. Because the space of Gaussian is a Riemannian manifold and it is difficult to incorporate learning mechanism in the model. To address this issue, we use L2EMG to map the multidimensional Gaussian model to the linear space, and then use WPCA to learn face features. We also implemented the key-point-based version of LGLG-WPCA, called LGLG(KP)-WPCA. Experiments show the proposed methods are effective and promising for face texture feature extraction and the combination of the feature of the proposed methods and the features of Deep Convolutional Network (DCNN) achieved the best recognition accuracies on FERET database compared to the state-of-the-art methods. In the next version of this paper, we will test the performance of the proposed methods on the large-varying pose databases.

Summary

We haven't generated a summary for this paper yet.