Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360 degree Images (1811.08196v2)

Published 20 Nov 2018 in cs.CV

Abstract: Omni-directional cameras have many advantages overconventional cameras in that they have a much wider field-of-view (FOV). Accordingly, several approaches have beenproposed recently to apply convolutional neural networks(CNNs) to omni-directional images for various visual tasks.However, most of them use image representations defined inthe Euclidean space after transforming the omni-directionalviews originally formed in the non-Euclidean space. Thistransformation leads to shape distortion due to nonuniformspatial resolving power and the loss of continuity. Theseeffects make existing convolution kernels experience diffi-culties in extracting meaningful information.This paper presents a novel method to resolve such prob-lems of applying CNNs to omni-directional images. Theproposed method utilizes a spherical polyhedron to rep-resent omni-directional views. This method minimizes thevariance of the spatial resolving power on the sphere sur-face, and includes new convolution and pooling methodsfor the proposed representation. The proposed method canalso be adopted by any existing CNN-based methods. Thefeasibility of the proposed method is demonstrated throughclassification, detection, and semantic segmentation taskswith synthetic and real datasets.

Citations (90)

Summary

We haven't generated a summary for this paper yet.