Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Study of Computational Aesthetics (1811.08012v1)

Published 19 Nov 2018 in eess.IV, cs.CV, and cs.MM

Abstract: Objective metrics model image quality by quantifying image degradations or estimating perceived image quality. However, image quality metrics do not model what makes an image more appealing or beautiful. In order to quantify the aesthetics of an image, we need to take it one step further and model the perception of aesthetics. In this paper, we examine computational aesthetics models that use hand-crafted, generic and hybrid descriptors. We show that generic descriptors can perform as well as state of the art hand-crafted aesthetics models that use global features. However, neither generic nor hand-crafted features is sufficient to model aesthetics when we only use global features without considering spatial composition or distribution. We also follow a visual dictionary approach similar to state of the art methods and show that it performs poorly without the spatial pyramid step.

Citations (6)

Summary

We haven't generated a summary for this paper yet.