Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explain to Fix: A Framework to Interpret and Correct DNN Object Detector Predictions (1811.08011v1)

Published 19 Nov 2018 in cs.CV

Abstract: Explaining predictions of deep neural networks (DNNs) is an important and nontrivial task. In this paper, we propose a practical approach to interpret decisions made by a DNN object detector that has fidelity comparable to state-of-the-art methods and sufficient computational efficiency to process large datasets. Our method relies on recent theory and approximates Shapley feature importance values. We qualitatively and quantitatively show that the proposed explanation method can be used to find image features which cause failures in DNN object detection. The developed software tool combined into the "Explain to Fix" (E2X) framework has a factor of 10 higher computational efficiency than prior methods and can be used for cluster processing using graphics processing units (GPUs). Lastly, we propose a potential extension of the E2X framework where the discovered missing features can be added into training dataset to overcome failures after model retraining.

Citations (13)

Summary

We haven't generated a summary for this paper yet.