Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Learning of Average Belief Over Networks Using Sequential Observations (1811.07799v1)

Published 19 Nov 2018 in cs.MA, cs.LG, and cs.SY

Abstract: This paper addresses the problem of distributed learning of average belief with sequential observations, in which a network of $n>1$ agents aim to reach a consensus on the average value of their beliefs, by exchanging information only with their neighbors. Each agent has sequentially arriving samples of its belief in an online manner. The neighbor relationships among the $n$ agents are described by a graph which is possibly time-varying, whose vertices correspond to agents and whose edges depict neighbor relationships. Two distributed online algorithms are introduced for undirected and directed graphs, which are both shown to converge to the average belief almost surely. Moreover, the sequences generated by both algorithms are shown to reach consensus with an $O(1/t)$ rate with high probability, where $t$ is the number of iterations. For undirected graphs, the corresponding algorithm is modified for the case with quantized communication and limited precision of the division operation. It is shown that the modified algorithm causes all $n$ agents to either reach a quantized consensus or enter a small neighborhood around the average of their beliefs. Numerical simulations are then provided to corroborate the theoretical results.

Citations (13)

Summary

We haven't generated a summary for this paper yet.