Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixed Likelihood Gaussian Process Latent Variable Model (1811.07627v1)

Published 19 Nov 2018 in cs.LG and stat.ML

Abstract: We present the Mixed Likelihood Gaussian process latent variable model (GP-LVM), capable of modeling data with attributes of different types. The standard formulation of GP-LVM assumes that each observation is drawn from a Gaussian distribution, which makes the model unsuited for data with e.g. categorical or nominal attributes. Our model, for which we use a sampling based variational inference, instead assumes a separate likelihood for each observed dimension. This formulation results in more meaningful latent representations, and give better predictive performance for real world data with dimensions of different types.

Citations (3)

Summary

We haven't generated a summary for this paper yet.