Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PydMobileNet: Improved Version of MobileNets with Pyramid Depthwise Separable Convolution (1811.07083v1)

Published 17 Nov 2018 in cs.CV

Abstract: Convolutional neural networks (CNNs) have shown remarkable performance in various computer vision tasks in recent years. However, the increasing model size has raised challenges in adopting them in real-time applications as well as mobile and embedded vision applications. Many works try to build networks as small as possible while still have acceptable performance. The state-of-the-art architecture is MobileNets. They use Depthwise Separable Convolution (DWConvolution) in place of standard Convolution to reduce the size of networks. This paper describes an improved version of MobileNet, called Pyramid Mobile Network. Instead of using just a $3\times 3$ kernel size for DWConvolution like in MobileNet, the proposed network uses a pyramid kernel size to capture more spatial information. The proposed architecture is evaluated on two highly competitive object recognition benchmark datasets (CIFAR-10, CIFAR-100). The experiments demonstrate that the proposed network achieves better performance compared with MobileNet as well as other state-of-the-art networks. Additionally, it is more flexible in fine-tuning the trade-off between accuracy, latency and model size than MobileNets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.