Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Spanner for the Day After (1811.06898v3)

Published 16 Nov 2018 in cs.CG

Abstract: We show how to construct $(1+\varepsilon)$-spanner over a set $P$ of $n$ points in $\mathbb{R}d$ that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters $\vartheta,\varepsilon \in (0,1)$, the computed spanner $G$ has $ O\bigl(\varepsilon{-c} \vartheta{-6} n \log n (\log\log n)6 \bigr) $ edges, where $c= O(d)$. Furthermore, for any $k$, and any deleted set $B \subseteq P$ of $k$ points, the residual graph $G \setminus B$ is $(1+\varepsilon)$-spanner for all the points of $P$ except for $(1+\vartheta)k$ of them. No previous constructions, beyond the trivial clique with $O(n2)$ edges, were known such that only a tiny additional fraction (i.e., $\vartheta$) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion.

Citations (18)

Summary

We haven't generated a summary for this paper yet.