Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

nn-dependability-kit: Engineering Neural Networks for Safety-Critical Autonomous Driving Systems (1811.06746v2)

Published 16 Nov 2018 in cs.LG and stat.ML

Abstract: Can engineering neural networks be approached in a disciplined way similar to how engineers build software for civil aircraft? We present nn-dependability-kit, an open-source toolbox to support safety engineering of neural networks for autonomous driving systems. The rationale behind nn-dependability-kit is to consider a structured approach (via Goal Structuring Notation) to argue the quality of neural networks. In particular, the tool realizes recent scientific results including (a) novel dependability metrics for indicating sufficient elimination of uncertainties in the product life cycle, (b) formal reasoning engine for ensuring that the generalization does not lead to undesired behaviors, and (c) runtime monitoring for reasoning whether a decision of a neural network in operation is supported by prior similarities in the training data. A proprietary version of nn-dependability-kit has been used to improve the quality of a level-3 autonomous driving component developed by Audi for highway maneuvers.

Citations (11)

Summary

We haven't generated a summary for this paper yet.