Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond the Bakushinskii veto: Regularising linear inverse problems without knowing the noise distribution (1811.06721v5)

Published 16 Nov 2018 in math.NA and cs.NA

Abstract: This article deals with the solution of linear ill-posed equations in Hilbert spaces. Often, one only has a corrupted measurement of the right hand side at hand and the Bakushinskii veto tells us, that we are not able to solve the equation if we do not know the noise level. But in applications it is ad hoc unrealistic to know the error of a measurement. In practice, the error of a measurement may often be estimated through averaging of multiple measurements. We integrated that in our anlaysis and obtained convergence to the true solution, with the only assumption that the measurements are unbiased, independent and identically distributed according to an unknown distribution.

Citations (16)

Summary

We haven't generated a summary for this paper yet.