Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HSD-CNN: Hierarchically self decomposing CNN architecture using class specific filter sensitivity analysis (1811.04406v2)

Published 11 Nov 2018 in cs.CV

Abstract: Conventional Convolutional neural networks (CNN) are trained on large domain datasets and are hence typically over-represented and inefficient in limited class applications. An efficient way to convert such large many-class pre-trained networks into small few-class networks is through a hierarchical decomposition of its feature maps. To alleviate this issue, we propose an automated framework for such decomposition in Hierarchically Self Decomposing CNN (HSD-CNN), in four steps. HSD-CNN is derived automatically using a class-specific filter sensitivity analysis that quantifies the impact of specific features on a class prediction. The decomposed hierarchical network can be utilized and deployed directly to obtain sub-networks for a subset of classes, and it is shown to perform better without the requirement of retraining these sub-networks. Experimental results show that HSD-CNN generally does not degrade accuracy if the full set of classes are used. Interestingly, when operating on known subsets of classes, HSD-CNN has an improvement in accuracy with a much smaller model size, requiring much fewer operations. HSD-CNN flow is verified on the CIFAR10, CIFAR100 and CALTECH101 data sets. We report accuracies up to $85.6\%$ ( $94.75\%$ ) on scenarios with 13 ( 4 ) classes of CIFAR100, using a pre-trained VGG-16 network on the full data set. In this case, the proposed HSD-CNN requires $3.97 \times$ fewer parameters and has $71.22\%$ savings in operations, in comparison to baseline VGG-16 containing features for all 100 classes.

Citations (5)

Summary

We haven't generated a summary for this paper yet.