Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User Modeling for Task Oriented Dialogues (1811.04369v1)

Published 11 Nov 2018 in cs.CL, cs.AI, and cs.LG

Abstract: We introduce end-to-end neural network based models for simulating users of task-oriented dialogue systems. User simulation in dialogue systems is crucial from two different perspectives: (i) automatic evaluation of different dialogue models, and (ii) training task-oriented dialogue systems. We design a hierarchical sequence-to-sequence model that first encodes the initial user goal and system turns into fixed length representations using Recurrent Neural Networks (RNN). It then encodes the dialogue history using another RNN layer. At each turn, user responses are decoded from the hidden representations of the dialogue level RNN. This hierarchical user simulator (HUS) approach allows the model to capture undiscovered parts of the user goal without the need of an explicit dialogue state tracking. We further develop several variants by utilizing a latent variable model to inject random variations into user responses to promote diversity in simulated user responses and a novel goal regularization mechanism to penalize divergence of user responses from the initial user goal. We evaluate the proposed models on movie ticket booking domain by systematically interacting each user simulator with various dialogue system policies trained with different objectives and users.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Izzeddin Gur (23 papers)
  2. Gokhan Tur (47 papers)
  3. Pararth Shah (13 papers)
  4. Dilek Hakkani-Tur (94 papers)
Citations (55)